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Priming of defense is an adjustment of the plant’s immune sys-
tem, which results in a faster and stronger activation of inducible 
defense mechanisms after exposure to environmental stress.2-4 A 
well-characterized form of defense priming takes place during 
expression of systemic acquired resistance (SAR). This resistance 
response is effective against biotrophic pathogens, requires regu-
lation by the defense regulatory gene NON EXPRESSOR OF PR 
GENES (NPR1), and is associated with priming of salicylic acid 
(SA)-dependent genes.5,6 Recent evidence suggests that priming 
of SA-inducible genes involves epigenetic regulatory mechanisms, 
such as post-translational modifications of histone proteins and 
the RNA Polymerase V.7,8

We recently demonstrated that progeny from Pseudomonas 
syringae pv. tomato (Pst) DC3000-infected Arabidopsis (P

1
 prog-

eny) are primed for SA-dependent defense compared with prog-
eny from control-treated healthy plants (C

1
 progeny). We named 

this phenomenon “transgenerational SAR”, since the resistance 
in P

1
 progeny is effective against (hemi)-biotrophic pathogens, it 

requires NPR1, and it is associated with priming of SA-inducible 
defense genes.1 In the same journal issue, two complementary 
publications demonstrated transgenerational defense priming 
upon exposure to herbivory and the chemical priming agent 
β-aminobutyric acid.9,10 Transgenerational SAR in P

1
 progeny 

from diseased plants was associated with increased levels of acet-
ylated histone 3 at lysine 9 (H3K9) at SA-inducible gene pro-
moters,1 a chromatin mark that is associated with a permissive 
state of transcription.11 Moreover, the drm1drm2cmt3 (ddc) triple 
mutant, which is affected in non-CpG DNA methylation,12 mim-
icked the transgenerational SAR phenotype.1 Since infection by 
PstDC3000 induces DNA hypomethylation in Arabidopsis,13 we 
hypothesized that transgenerational SAR is transmitted through 
DNA hypomethylation at non-CpG sites.

Progeny from diseased arabidopsis shows enhanced resistance, which is associated with priming of defense genes.1 this 
transgenerational systemic acquired resistance (Sar) is effective against biotrophic pathogens, such as the downy mildew 
pathogen Hyaloperonospora arabidopsidis. in this study, we have examined mutants in rna-directed Dna methylation 
(rdDm) for transgenerational Sar. our analysis suggests that transgenerational Sar is regulated by the rdDm pathway 
and transmitted by hypomethylation at CpnpG sites.
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In this study, we have tested transgenerational SAR phe-
notypes of various Arabidopsis mutants in the RNA-directed 
DNA methylation (RdDM) pathway (Figs. 1 and 2). Parental 
plants were repeatedly inoculated with either mock solution, or 
a suspension containing PstDC3000 bacteria, and allowed to set 
seeds. At least three independent C

1
 and P

1
 progenies of each line 

were tested for resistance against the downy mildew pathogen 
Hyaloperonospora arabidopsidis, as described before in reference 1. 
The results of these bioassays are summarized in Figure 2.

P
1
 progeny from the RdDM pathway mutants ago4-3,14 clsy1-

1,15 nrpd2a-1,16 drd1-6 17 and dcl3-1,18 failed to express increased 
resistance in comparison to their C

1
 progenies. Furthermore, C

1
 

progeny of the ago4-3 mutant showed constitutively enhanced 
resistance in comparison to C

1
 progeny of wild-type plants (χ2 = 

14.2; p = 0.002). Since mutations in AGO4 cause reduced levels 
of non-CpG DNA methylation,19 the phenotype of the ago4-3 
mutant supports our hypothesis that hypomethylation at non-
CpG sites transmits SAR. Surprisingly, however, C

1
 progeny 

from the other RdDM mutants displayed similar levels of suscep-
tibility as C

1
 progeny from wild-type plants. Considering their 

inability to express transgenerational SAR, these phenotypes 
suggest positive regulation by the corresponding RdDM compo-
nents. In a second experiment, we tested additional Arabidopsis 
mutants impaired in non-CpG DNA methyltransferase activity. 
As observed for the ago4-3 mutant and ddc triple mutant,1 C

1
 

and P
1
 progenies from the drm1drm2kyp (ddk) triple mutant12 

showed no difference in resistance to H. arabidopsidis, while the 
C

1
 progeny of this triple mutant expressed elevated levels of basal 

resistance in comparison to C
1
 progeny from wild-type plants 

(χ2 = 17.31; p = 0.001). By contrast, the drm1drm2 (dd) double 
mutant, which is specifically impaired in asymmetric CpHpH 
DNA methylation,12 displayed a wild-type phenotype and was 
unaffected in transgenerational SAR and basal resistance. 
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of the response is determined by the 24-nucleotide sequence of 
the siRNAs.

Our findings that the dd double mutant expressed a wild-type 
phenotype, whereas C

1
 and P

1
 progenies of the ddk and ddc triple 

mutant display similar levels of constitutively enhanced resistance 
(Fig. 2),1 points to a critical role for KYP- and CMT3-dependent 
DNA methylation. KYP directs CMT3 activity through meth-
ylation of the lysine 9 residue of histone H3.23 Its involvement 
in transgenerational SAR supports our previous observation that 
transgenerational SAR is marked by increased acetylation of 
H3K9 at SA-inducible gene promoters.1 Since KYP and CMT3 
predominantly mediate cytosine methylation at symmetrical 
CpHpG sites,24 we conclude that transgenerational SAR is trans-
mitted by DNA hypomethylation at CpHpG sites.
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Finally, the kyp-6,12 single mutant, which is specifically affected 
in CpHpG methylation,20 resembled the defense phenotype of 
clsy1-1, nrpd2a-1, drd1-6 and dcl3-1: there was no significant dif-
ference in resistance between C

1
 and P

1
 progenies, and C

1
 prog-

eny of this mutant displayed similar levels of susceptibility as C
1
 

progeny from wild-type plants.
It is clear from the data presented in this communication that 

transgenerational SAR in Arabidopsis involves regulation by 
the RdDM pathway. The exact role of each individual RdDM 
component remains difficult to decipher on the basis of the 
presented disease phenotypes. Rasmann et al. (2012) used two 
RdDM pathway Arabidopsis mutants to assess the contribution 
of siRNAs in transgenerational priming of jasmonic-acid (JA)-
dependent defense against herbivory:9 the nrpd2a nrpd2b double 
mutant21 and the dcl2dcl3dcl4 triple mutant.22 Progenies from 
healthy, herbivore-exposed and jasmonic acid-treated plants of 
these mutants failed to show differences in resistance against the 
specialist herbivore Pieris rapae, suggesting a critical role for the 
RdDM pathway in transgenerational priming of JA-dependent 
defenses. Hence, the RdDM pathway controls trans-generational 
priming of both JA and SA dependent defenses. We therefore 
propose that the RdDM pathway provides the machinery for dif-
ferent transgenerational defense responses, while the specificity 

Figure 1. model of the rna-directed Dna methylation (rdDm) pathway, adapted from references 25 and 26. multi-subunit Dna-dependent rna Poly-
merase iV (Pol iV) generates single stranded rnas, which are used as a template by rna-dependent rna polymerase 2 (rDr2) to generate double-
stranded rnas (dsrnas). DICER-LIKE 3 (DCL3) processes dsrnas into 24-nucleotide sirnas that become methylated by the rna-methyltransferase 
HEN1 and subsequently recruited by the AGO4-RISC complex to targeted genomic sites via interaction with the Dna-dependent rna Polymerase V 
(Pol V). Pol V is required for Dna methyltransferase activity by DRM1, DRM2 and CMT3 and chromatin remodeling enzymes DRD, CLSY and KYP. the 
rdDm pathway targets cytosine (C) methylation at non-CpG sites. Signaling components affected in the mutants tested for transgenerational Sar are 
shown in color; green, enzymes in the sirna machinery; red, chromatin remodeling enzymes; blue, Dna methyltransferase enzymes.
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